A spanning tree is a subgraph of an existing graph that is a tree and connects all the nodes. There can be many spanning trees in a graph. Prim’s algorithm finds the minimum spanning tree, whose sum of weights of edges is minimum.
// Prim’s Minimum Spanning Tree Algorithm
#include <bits/stdc++.h>
using namespace std;
// Number of nodes in the graph
#define Nodes 6
// Find the minimum value node
int mininumKey(int keys[], bool minimumSpanningTreeSet[])
{
int mininumValue = INT_MAX;
int minimumIndex;
for (int i = 0; i < Nodes; i++)
{
if (minimumSpanningTreeSet[i] == false && keys[i] < mininumValue)
{
mininumValue = keys[i];
minimumIndex = i;
}
}
return minimumIndex;
}
// Print the solution
void printEdgeWidth(int parent[], int graph[Nodes][Nodes])
{
cout<<"Edge \tWeight\n";
for (int i = 1; i < Nodes; i++)
{
char firstNode = parent[i] + 65;
char secondNode = i + 65;
cout<<firstNode<<" - "<<secondNode<<" \t"<<graph[i][parent[i]]<<" \n";
}
}
void primMinimumSpanningTree(int graph[Nodes][Nodes])
{
int parentGraph[Nodes];
int keys[Nodes];
bool minimumSpanningTreeSet[Nodes];
// Initialize all values as +infinite
for (int i = 0; i < Nodes; i++)
{
keys[i] = INT_MAX;
minimumSpanningTreeSet[i] = false;
}
keys[0] = 0;
parentGraph[0] = -1;
for (int i = 0; i < Nodes - 1; i++)
{
int minKey = mininumKey(keys, minimumSpanningTreeSet);
minimumSpanningTreeSet[minKey] = true;
// Update the key value and parent index of the adjacent nodes of the picked node.
for (int i = 0; i < Nodes; i++)
{
if (graph[minKey][i] && minimumSpanningTreeSet[i] == false && graph[minKey][i] < keys[i])
{
parentGraph[i] = minKey;
keys[i] = graph[minKey][i];
}
}
}
// print the constructed MST
printEdgeWidth(parentGraph, graph);
}
int main()
{
int graph[Nodes][Nodes] = { { 0, 5, 0, 0, 0, 4 },
{ 5, 0, 3, 0, 0, 9 },
{ 0, 3, 0, 7, 1, 2 },
{ 0, 0, 7, 8, 0, 0 },
{ 0, 0, 1, 0, 8, 9 },
{ 4, 9, 2, 0, 9, 0 } };
primMinimumSpanningTree(graph);
return 0;
}
Edge Weight
C - B 3
F - C 2
C - D 7
C - E 1
A - F 4
Comments